1.1 General principles
1.1.1 Frequency, wavelength, energy, and wavenumber
1.1.2 Properties of electromagnetic radiation
1.1.3 Energy level and distribution
2.1 Introduction
2.2 Sedmentation
2.2.1 Sedimentation and diffusion
2.2.2 Svedberg equation2.3 Electrophoresis
2.3.1 Electrophoresis of nucleic acids
2.3.2 SDS-gel electrophoresis of proteins2.4 Chromotography
2.5 Mass spectroscopy
3.1 Optical microscopy
3.2 Electron microscopy
3.2.1 Transmitting electron microscopy (TEM)
3.2.2 Scanning electron microscopy (SEM)
3.2.3 Cryo-electron microscopy & image reconstruction
4.1 General principles
4.1.1 Absorption
4.1.2 Emission
4.1.3 Scattering
4.1.4 Beer-Lambert's Law4.2 Infrared (IR) spectroscopy
4.3 Ultraviolet (UV) and visable light spectroscopy
4.4 Circular dichrosim (CD)
4.4.1 Electronic CD of proteins
4.4.2 Electronic CD of nucleic acids
4.4.3 Singular value decomposition and analyzing the CD of proteins for secondary structures4.5 Fluorescence
4.5.1 Quantum yield
4.5.2 Fluorescent groups in biomolecular system
4.5.3 Forster's rule - the molecular ruler4.6 Nuclear magnetic resonance (NMR) spectroscopy
4.6.1 Physical properties of FT-NMR
4.6.2 Nuclear Overhauser Effect (NOE)
4.6.3 J-coupling
4.6.4 One-dimensional and multiple-dimensional NMR spectra and assignment
4.6.5 Solution structure determination
5.1 Crystals
5.1.1 Symmetry and space groups
5.1.2 Growing crystalls5.2 Theory of X-ray diffraction
5.2.1 Bragg's law
5.2.2 von Laue condition for diffraction5.3 Solving biomolecular structures by X-ray crystallography
5.3.1 The structure factor
5.3.2 The phase problem
5.3.3 The resolution of X-ray diffraction