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What is aging?

Definition: “ A time dependent loss of vigor resulting in increased mortality”
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Aging theories
Evolutionary: Loss of selection

Mechanistic: Free radical
Caloric restriction
Metabolic rate
Hormone
Replicative senescence

o AR~ EL N
SRR
. ﬂﬁﬁﬁ@ﬂ—;& i
. zﬁlﬁi#ﬁzﬁ’“

FHER AL

-;:'r [ﬂﬁﬁj = b Pl
%w  He E“‘Wﬂﬂ

;kﬁ ,ﬂﬁu ’34 EIE?H J4 o

_D




o TREFM ) ERDFZ Fﬂj%gj“éjrjfggfj
GRS FRE - TR
:@;%’ SR A1 IE TIRESE A

. P*U E'IJ?'EF":EZ”‘*JFEEJEL[?‘ e
Wﬂf'u USTRE (PR CF i
B ,IDE g )

»i il (- L’f&j%) ?%ﬂ%“‘iﬁ

Aging and longevity genes: strategies for
identifying DNA sequences controlling life span.
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Cross-Species Comparisons of Processes and
Genes Thal Influence Longevily and/or Aging
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Conserved regulation of longevity in different species
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A systematic RNAI screen for longevity
genes in C. elegans

Benjamin Hamilton,1 Yuging Dong,1 Mami Shindo,1 Wenyu Liu,1 lan Odell,1 Gary Ruvkun,2,3,4 and
Siu Sylvia Leel,3,5

1Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
2Department of

Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School,
Boston, Massachusetts 02114, USA

Genome-wide RNAi screen

Using an RNAI bacterial library targeting >80% of the ~19,000 C. elegans open reading frames (Fraser et al.
2000; Kamath et al. 2003) and a high-throughput lifespan assay, we screened for RNAI inactivations that
extend the lifespan of wild-type N2 worms. The RNAI clones that were scored positive in the first round of
primary screen were subjected to two more rounds of highthroughput lifespan assay. Of the 16,475 RNAI
clones tested, ~600 RNAi clones induced lifespan extension above a rather modest threshold in high-
throughput screening. Of these ~600 RNAi clones, we performed lifespan assays with many more time
points using rrf- 3(pk1426), a mutant with enhanced susceptibility to feeding RNAi (Simmer et al. 2002) and a
normal lifespan (Lee et al. 2003a; Murphy et al. 2003). After three rounds of retesting, we identified 90 RNAi
clones that significantly extended C. elegans lifespan (P-value < 0.05) in at least two of the lifespan
experiments (Table 1; Supplementary Table 1). The plasmid construct for each of the final 90 RNAi clones
was isolated and sequenced to verify its corresponding target gene (Table 1). The 90 RNAI constructs target

89 distinct genes.

GENES & DEVELOPMENT 19:1544-1555, 2005

"
A4
i1)

CRFLN JURLNE TS

. SIRZ“'HE.JJHP (e Jwﬁiﬁ’lfjfg’smzuﬂ
(IR PUIRAIC R =22 R BR A

E\,Exﬁ‘l%%  TEE P fP/JHI » P78 af’?f%
srf BT %HH&* i R e
(Ut F”f!lﬂ: ERYRTTE A fELN
ORI a\E‘WHlDNA['S?F“ SV (B
el ’*%ﬁ:’“@*@ lﬂ I'JFF’{@T” EJIpES
- PR




Ji‘M‘ﬂ ﬁi i< i E ARl S iﬁg

PSIRZY 9 £y 81 Flp s -
p g - R SrF 1 (heat shoc
prottﬂll ﬁuf #E ( e
dlsmutase)

el i R e e T

EfﬁJl r L'—[ L

.

Oxidative Damage

The free radical theory of aging was first proposed by
Denham Harman in November, 1954.

Free radicals are collular yenegades; they wreak havoc by damaging DNA mitodkron-
dria, altering bioch ds, corroding cell and humgc lls outright.
Such molecular muyhem, scientists increasingly believe, plays a major role in the develop-
ment of ailments like cancer, heart or lung disease and cataracts. Mary researchers are
convinced that the cumulative effects of free radicals also underlie the gradual deterioration
that is the hallmark of aging in all individuals, kealthy as well as sick.

—TIME, April 6, 1992
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The evidence that oxidative damage causes aging

Transgenic Drosophila overexpressing both Cu/Zn SOD and catalase live
34% longer than controls.
The expression of human SOD1 exclusively in Drosophila adult motor

neurons leads to a 40% extension in life span. see neside

Figure 1. GAL4-activated expression of human SOD1 in
motorneurons.

adult brain and hybridized in
situ with a full length dioxygenin-abelled human SOD1.(HS)
GONA. Tissues were exantined from transgenic fies beating
one copy each of HS1 and D42-GAL4 (HSL/+:GAL4/+)
Transgenic HS expression was detected primarly in the
central brain (Br),lateral margins adjacent to the lobulalubula.
plate (arowheads), and suboesophageal ganglia (S). No
expression was detected n the optic obes (OL) or reina ().
b, A schematic of the ventral ganglia depicting the location of
four ganglonic regions: prothoracic (Pro), mesothoracic
(Meso), and combined metathoracic and abdominal ganglia
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Figure 3. Extension of ST APRAM ftespan by
expression of SODLin motorneurons

Aduit Sod"* males (0-24-h old) bearing a single
copy of HS1 (&) or HS2 (b) and either one o no
copies of D42-GAL4 were maintained at 25 C in
shellvials (10 lies per via) containing standard
commeal agar medium. The starting population

survivorship every two days. The mean (50%
mortality) and maximum (80% mortaly) fespan
for each genotype s as follows: HS1/++/+ (mean

(Meta-Ab) which act as landmarks are also
shown, (ADMN, PDMN; L1 and L2). Four of the five:
identiiable fiight motomeurons (red circles) are ventrally
located, the fifh s located dorsally. ¢, The expression of the
D42-GAL4 line was determined by immunofiurescence after
crossing to fiies containing a UAS-GFP transgene. llustrated

4+ (mean=63.7 43 max.=
732 3.4;HS2ei+l+ (mean =522 1.8; max.
=588  15); HS2/+D42GALAI+ (mean =
606 22max.=710 2.7). The lifespan of
the D42-GAL4/++/+ control is very similar to the
HS/+;+/+ strains. Expression of HS under the

is the result of a 2-series of
ventral ganglia. The location of four of the large fight muscle

motomeurons is indicated by an arrowhead. d , Expression of
HS can be detected within flight muscle motorneurons 1-4 ()
as well as other motomeurons distributed at various locations
within the ventral ganglia. Scale bar:a, 200 m;b,100 m.

GAL4 drivers,
including a heatshock-GAL4 consiruct which
drives expression broadly at all stages of

et e

Figure 4. Restoration of adult lifespan in Sod null mutant by SOD1 expression in
motorneurans.
a, Adult males (0-48 h old) homozygous for Sodx39 and also bearing different combinations of
HS and D42-GAL4 transgenes were maintained at 25 C in shell vials (10 flies per vial)
containing agar medium. size for each genolype was
50 fies. Flies were scored daily for survivorship and transferred to fresh vials every two da
Gene-dosage effects on restoration of adult lfespan. Adut males (0-48 h old) homozygaus for
'S0dx39 and also bearing one or two Copies each of HS1 and the D42-GAL activator were

d lfespan asin (a). The startin
180, 335 and 70 for the 0-dose, 1-dose and 2-dose genotypes, respectivly. The O-dose control
bears two copies of HS1 but no D42-GAL4 activator. The data presented are representative of at
least two separate experiments.

Figure 6. Expression of SODL in motorneurons confers resistance to oxidative stress in Sod
null mutants.
a, Resistance to paraquat. Adult males (0-48 h old) homozygous for Sod*® and also bearing
diferent combinations of UAS-HS and D42-GAL4 transgenes were maintained at 25 C in shell vials
containing fifer pacis saturated with aqueous paraquat and scored for survival after 24 h. Each point
represents 50 flies (5 vials of 10 fies each). b , Resistance to ionizing radiation. Adult males (24-48 h
old) 500 and also of UAS-HS and D42.GAL4
ransgenes were exposed 1o 100 kRad _-radiation (180 min at 520 Radsimin in a cobalt® source)
and then maintained at 25 C in shellvials containing standard commeal agar medium and scored

\

development and an elav-GAL:
drives expression at high levels in embryonic and
larval neurons, did not extend lfespan (data not

Nature Genetics 19, 171 - 174 (1998)

Extension of Life-Span with Superoxide Dismutase/Catalase Mimetics
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To test the oxygen radical theory of aging by the development of synthetic catalytic compounds
og - that ameliorate oxidative stress in several disease modelsand partially rescue mice that are mutant
o 10 T0 for mitochondrial superoxide dismutase (SOD). tested the effect of two mimetics, EUK-8 and EUK-
134, on life-span in Caenorhabitis elegans. In vitro, these compounds exhibit both SOD- and
10— catalase-like activities (they are SOD/catalase mimetics). EUK-134 is an analog of EUK-8, with

wi untreated
age-1{tm546)

=
-

Fraction Surviving g
2

wi EUK-134 [0.5mM]

increased catalase activity and equivalent SOD activity

the effects of EUK-134 on the life-span of a mutant worm strain that exhibits accelerated aging
Mutation of the mev-1 gene, encoding the cytochrome b subunit of succinate dehydrogenase
(complex Il) of the electron transport chain, resuts in an elevated accumulation of oxidative

0.4
damage during aging, an increased sensitivity to oxygen, and a life-span shortened by 37%
ozl (P <0.0001; Fig. 1C) (19, 20). Treatment with 0.5 mM EUK-134 restored a normal life-span to the
§ mev-1(kn1) mutants by increasing their life-span by 67% (P < 0.0001; Fig. 1C). These results are
o0 consistent with amelioration of an endogenous and chronic oxidative stress.
o
c
1.0 o—uxy Figure 1. Kaplan-Meier survival curve (+SE) of wild-type (wt) and mev-1(kn1) adult
u‘\‘ *— mev-Tikn 1) unireated worms treated with SOD/catalase mimetics. Synchronously aging hermaphrodite
2 oa —=— wit unfreated worms were cultured in S medium with Escherichia coli as a food source (17).
£ P - Worms were scored as dead when they failed to respond to repeated touching with
S a platinum wire pick. (A) Mean life-span (SEM) in days of strain N2 (wild-
@ 08 EUK-134 [0.5mM] type) = 24 + 1 (solid squares); of strain TJ1052 [age-1(hx546)] = 38 * 2 (circles);
5 and of strain N2 (wild-type) treated with 0.05 mM EUK-134 = 31 + 3 (open squares).
g o4 (B) Mean life-span (:SEM) in days of strain N2 (wild-type) = 24 + 1 (squares); of
2 strain TJ1052 [age-1(hx546)] = 41 £ 3 (circles); and of strain N2 (wild-type) treated
v ooz with 0.5 mM EUK-134 = 37 £ 2 (open squares). (C) Mean life-span (:SEM) in days
of strain N2 (wild-type) = 24 + 2 (squares), n = 7 worms; of strain mev-
oo i 1(kn1) = 15 * 1 (solid triangles), n = 19 worms; and of strain mev-1(kn1) treated
M W s e 70 with 0.5 mM EUK-134 = 25 £ 2, n = 16 worms. Very similar results were obtained in

Age (days)

independent experiments.

Science, Vol 288, Issue 5484, 1567-1569 , 1 September 2000
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From development to aging
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Figure 1. Life Span Is Determined by the Balance of Two Opposing Processes
Metabolism leads to the accumulation of damage (red), thus causing aging.

Compensatory responses (green) limit or repair the damage, thus promoting
longevity.
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Silent information regulator 2

[DEFINITION] NAD-dependent histone deacetylase sir2
(Regulatory protein sir2) (Silent information regulator 2).

[FUNCTION] Involved in silencing within the
mating-type region, at the telomeres, and
according to Ref.4 also within centromeric

swib to the telomeres, silent mating type

region, and according to Ref.4 to the

centromeric DNA regions. According to Ref.1

not required for the localization of swi6 to unacetylated
centromeric foci. Deacetylates histone H3 on silent
Lys-9 and Lys-16 of histone H4. This has a

direct role in heterochromatin assembly.

Ac

HAT s Ac
DNA regions. Required for the localization of ro— }
i i i HDAC $

Ac

acetylated
active

Aging in the yeast 5. ceravisiae
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Model of Yeast Aging Due to Accumulation of
Extrachromosomal rDNA Circles (ERCs).

Cell, 1997, Vol 91, Pages 1033-

Figure 2. Symmetric and asymmetric cell divisions.
magnification using Nomarski optics. Mother cells are labeled
with the letter "m" and daughters with the letter "d7 (B)

A mother cell and her 42nd daughter to the right.

The Journal of Cell Biology, 1994, Volume 127, p1985-1993
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Figure 2. Calorie restriction triggers a regulatory response in yeast

CR can be imposed in yeast by reducing the glucose
concentration in the media from the usual 2% to 0.5%
(Fig. 2; Lin et al. 2000). Because cells continue to
feed on yeast extract plus peptone, which are rich in
amino acids, nucleotides, and vitamins, the growth
rate remains rapid as glucose levels are lowered.
Thus, the reduction in glucose from 2% to 0.5%,
although modest, likely imposes a state of partial
energy (ATP) limitation. Other dietary restriction
protocols, which also limit amino acids and other
nutrients (Jiang et al. 2000, 2002), drastically slow the
growth rate and may make it more difficult to impose
energy limitation.

Under this conditions of CR, mother cells divide ~30%
more times. This additional life span does not
occur in a sir2 mutant or in strains in which NAD
synthesis is reduced (Lin et al. 2000). Therefore,
the activity of Sir2p is required to deliver the long life
span by CR, and indeed, the silencing activity of Sir2p
was shown to increase in CR cells.
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Using several chemical ‘libraries’, these investigators discovered two related compounds that each
stimulated Sir2 activity. Both compounds belong to a family of molecules called polyphenols — products of
metabolism in plants. One of the most widely studied of these compounds is resveratrol, a plant polyphenol
that is abundant in red wine and is reputed to underlie many of wine’s health related benefits.
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Small molecule activators of
sirtuins extend Saccharomyces
cerevisiae lifespan

Konrad T. Howitz!, Kevin J. Bitterman?, Haim Y. Cohen?,

Dudley W. Lamming?, Siva Lavu?, Jason G. Wood?, Robert
E.Zipkin?, Phuong Chung?, Anne Kisielewski', Li-Li Zhang?,
Brandy Scherer® & David A. Sinclair?
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STACSs: sirtuin-activating compounds

Tahs 1 Biomdetion sl ST SatadyBE i ey St iyl

R

v &

™

Fountain of youth juice

TazAEAS

Sirtuin activators mimic
caloric restriction and
delay ageing in metazoans

Jason G. Wood, Blanka Rogina, Siva Lavu, Konrad
Howitz, Stephen L. Helfand, Marc Tatar, and
David Sinclair

Nature. 2004,430(7000):686-9




Lifespan extension induced by resveratrol requires SIR-2.1in
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French paradox

Despite a high-fat diet, people in France suffer about
40% less cardiovascular disease than expected

Resveratrol improves health and survival of
mice on a high-calorie diet
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Figure 5. Collular targets of mammalian sirtuins. Nuclear SIRT1 targets several chromatin-interacting proteins with key roles in transcription, stress response and death.
Regulation of these proteins by SIRT1-dependent deacetylation might result in enhanced cellular resistance to stress, reduced morbidity and lifespan extension. SIRT2 is
mainly cytapl and ylates tubulin, arole in ganization in addition to cell structure and motility. SIRT3 is a mitochondrial deacetylase
with unknown functions. Pharmacalogical modulation of sirtuin activity by enzymatic activators or inhibitors can therefore significantly affect cellular functioning and be
harnessed totherapeutic interventions (see main text for further details). Abb PPAR-y, p ctivated recoptor y
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Eat your hot-dog and have it

Reducing your calorie intake makes you live longer — if you're a rat or
a worm. Laura Spinney asks whether the same holds for humans —
and if it does, whether the benefits could be put in a pill.

j————a g,

NATURE,Vol 441,15 June, 2006
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The Serious Search for an Anti-Aging Pill

[e /il (Mark A. Lane )
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Dietary restriction and 2-deoxyglucose administration improve
behavioral outcome and reduce degeneration of dopaminergic
neurons in models of Parkinson's disease.
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WHAT Don't Wi Know?

That hasn't stopped sclentists, some of
whom have Found mpanics, from
searching for treatments 10 show aging. COne
mtriguing question is whether calorie
restriction works in humans, [t's bemg
nested in primates, andthe Matianal Instinne
on Ag g in Betheds, Maryland, is fusding
short-term sudics in people, Volunteers i
s bave boen on a stringent dict
for up to | year whik rescarchens monitor
their metabalism and other factors that
could hint at how they re aging.

Insiights could also come from genetic
studics of contenarisns, who may have
mherised bnw life from their parcns, Many

e

nursing bome in southern  such as worms and fui fles, whe g has haman kfe span

France in 1997, ehe was 122 beon delayed the most, naryboncre sasceptible.  has an isherent upper limit, although they
years old, the long: to life-span P But sugeessful  don't agree on whether 1'% 830 100 0r 150,

uman cver documented. But Calment's approachcs arc comergmg o fow ki arc: O abiding question m the antaging
status will Fadke in subsey tevelsofinsulinlile  vorld s whas the goal of all dis wok oughs

docades if the prafictons of some biok-
gias 3exd densographers. come e,
Life-span exignsion in spee
From yest 1o muce s cutrapola
1o fro life ex pectncy wemds in
husmans have comninced 3 swath of
scheneias that hu
comst beyond 100 or 110 years of age.
{Teaday, 1 i 1000 poopl in mdustral-
Lzl couneries hold conterarian stmis.)
Ohhers s huanian lifee span way be far
mare limised The elwticity fount
other species might ot apply 1o us I-unh«
more, testing lifo-cxicnsion ¢

grosah factor | OIGE-1, a prosn: and provant-
Ingowicaive damage w1he body

be. Overwhelmang by, sclennists fvor treat-
merns that will how agiog and sove off age-

How Much Can Human
Life Span Be Extended
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