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Yeast Gene for a Tyr-DNA
Phosphodiesterase that Repairs

Topoisomerase I Complexes
Jeffrey J. Pouliot, Kevin C. Yao, Carol A. Robertson, Howard A. Nash*

Covalent intermediates between topoisomerase I and DNA can become dead-
end complexes that lead to cell death. Here, the isolation of the gene for an
enzyme that can hydrolyze the bond between this protein and DNA is described.
Enzyme-defective mutants of yeast are hypersensitive to treatments that in-
crease the amount of covalent complexes, indicative of enzyme involvement in
repair. The gene is conserved in eukaryotes and identifies a family of enzymes
that has not been previously recognized. The presence of this gene in humans
may have implications for the effectiveness of topoisomerase I poisons, such
as the camptothecins, in chemotherapy.

Topoisomerases are cellular enzymes that are
crucial for replication and readout of the ge-
nome; they work by breaking the DNA back-

bone, allowing or encouraging topological
change, and resealing the break (1). The en-
zymes are efficient because DNA breakage is
accompanied by covalent union between pro-
tein and DNA to create an intermediate that is
resolved during the resealing step. This
mechanism, although elegant, also makes to-
poisomerases potentially dangerous. If the
resealing step fails, a normally transient break
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in DNA becomes a long-lived disruption, one
with a topoisomerase protein covalently joined
to it. Unless a way is found to restore the

continuity of DNA, the cell will die.
In virtually all topoisomerases, the heart

of the covalent complex is a phosphodiester
between a specific tyrosine residue of the
enzyme and one end of the break (the 39 end
for eukaryotic topoisomerase I and the 59 end
for topoisomerases II and III). The high-en-
ergy nature of this bond normally ensures the
resealing step. But failure of resealing is
markedly increased by several drugs, such as
camptothecin (CPT), a promising anticancer
agent that specifically targets eukaryotic to-
poisomerase I (2). Protein-linked breaks also
accumulate when topoisomerases act on
DNA containing structural lesions such as
thymine dimers, abasic sites, and mismatched
base pairs (3). To the extent that such lesions
arise during the normal life of a cell, topoi-
somerase-associated damage may be un-
avoidable.

Repair of topoisomerase covalent com-
plexes is of obvious value to the cell, but the
subject remains largely unexplored. A plau-
sible pathway invokes hydrolysis of the bond
joining the topoisomerase to DNA; release of
the topoisomerase would then permit the
cleaved DNA to undergo conventional modes
of break repair (4). Although no such hydro-
lysis has been reported for covalent complex-

es of topoisomerases II or III, we described
(5) an activity that specifically hydrolyzes the
type of bond found in complexes between
DNA and topoisomerase I (Fig. 1A). The
specificity of this activity and its conserva-
tion from yeast to man suggested that it might
be part of a repair pathway. But without
specific inhibitors or mutants, no assessment
of its function could be made. We now report
the identification of the gene encoding this
enzyme and the demonstration of its impor-
tance for topoisomerase metabolism.

Crude extracts of the yeast Saccharomy-
ces cerevisiae contain readily detectable
amounts of tyrosyl-DNA phosphodiesterase
(TDP) activity (5). We disrupted (6) four
yeast genes—RAD9, RAD17, RAD52, and
TOP1—that we suspected might encode or
control the activity, but none of the disrup-
tions affected activity in extracts (Fig. 1B)
(7). To search for previously unknown genes,
we assayed extracts from colonies of chemi-
cally mutagenized yeast (8); this screen yield-
ed a single strain, KYY337, with very low
TDP activity (Fig. 1B). In back crosses to the
parental line, the enzyme defect appeared to
reflect a single mutation (denoted here as
enz). That is, when a diploid between the
parental line and a defective line was sporu-
lated and haploid colonies were assayed at
random (8), about equal numbers were found
with normal and with low enzyme activity.
The activity of representative colonies after
four rounds of back crossing is shown in Fig.
1B.

To assess the role of TDP activity in
repair of topoisomerase damage, we com-
pared strains for sensitivity to killing by CPT
(9). Despite the marked difference in TDP
activity, the parental line and the back-
crossed enz mutant were both insensitive to
CPT (Fig. 2A, bars 1 and 2). We reasoned
that, as for other kinds of damage (4), repair
of topoisomerase lesions might take place by
multiple pathways. If so, a genetic back-
ground in which some of these pathways
were disabled might reveal a role for TDP
activity. Indeed, when combined with a dis-

Fig. 1. Molecular genetics of tyrosyl-DNA phos-
phodiesterase (TDP) activity. (A) Enzymatic
transformations. The jagged line represents
the single-strand 18-mer oligonucleotide of
oHN279Y. TDP activity removes the tyrosine
from this chemically synthesized substrate (5)
and leaves a 39-terminal phosphate. In crude
extracts, subsequent action by unidentified
phosphatases can produce a 39-terminal hydroxyl.
(B) Denaturing gel analysis of TDP activity in
yeast strains. Incubations with 59-radiolabeled
oHN279Y were for 12 min as described (5) with
buffer (lane 1) or extract (150 mg/ml) from the
following strains: HNY102 and KYY337 (lanes 2
and 3); E17 and E6, two haploid segregants de-
rived from KYY337 after four rounds of back
crossing (lanes 4 and 5); HNY243 and HNY244,
rad9::hisG derivatives of HNY102 and E6 (lanes 6
and 7); HNY244 containing plasmid pL10-13
(lane 8); and HNY383, a derivative of HNY243
with a disruption of the gene for ORF YBR223c
(lane 9). The positions of the labeled substrate (Y)
and oligonucleotides terminated by phosphate (P)
and hydroxyl (O) residues are marked. Total TDP
activity is best judged as the ratio P 1 O/Y 1 P 1
O. (C) TDP activity in E. coli. Radiolabeled
oHN279Y was incubated as above with buffer
(lane 1) or sonic extracts (10 ng/ml) of strain
BL21(DE3) transformed either with plasmid vec-
tor (lane 2) or vector plus the coding region of
YBR223c (lane 3). wt, wild type.

Fig. 2. Influence of TDP activity on cell survival
after drug treatment. The indicated yeast
strains were exposed to drug for 24 hours,
diluted, and plated (9). Killing by the drug is
calculated from the relative change in colony-
forming units (CFUs), the number of colonies
obtained from a portion of the culture after
drug treatment divided by the number in a
portion of the starting culture. (A) CPT was
added at 100 mg/ml to strains HNY102, E6,
HNY243, HNY244, and HNY383 (bars 1 to 5).
(B) MMS was added at 0.01% to strains
HNY243 and HNY244 (bars 1 and 2). (C) CPT
was added at 100 mg/ml to strain HNY244
containing either a control plasmid, pX1, or
plasmid pL10-13 (bars 1 and 2).

Fig. 3. Cell growth with a toxic topoisomerase.
Strains HNY243 top1D and HNY244 top1D
were transformed with derivatives of plasmid
YCpGAL1 bearing either a wild-type TOP1 gene
or the Thr722 3 Ala (T722A) mutant (11).
These strains were serially diluted and spotted
on uracil-deficient minimal plates containing
either 2% glucose (Glu) or galactose (Gal) to
repress or induce the plasmid-borne gene.
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ruption of the RAD9 gene, the CPT sensi-
tivity of the low activity mutant (strain
HNY244), was increased by a factor of 12
relative to the rad9 derivative of the parental
strain, HNY243 (Fig. 2A, bars 3 and 4); the
same difference was seen after the mutant
had undergone two additional rounds of back
crossing (7).

The RAD9 gene is needed both for the
operation of DNA damage checkpoints and
for expression of a set of DNA damage–
inducible genes (10). The loss of these func-
tions in a rad9 mutant not only increases the
sensitivity of the cell to killing by CPT, it
apparently leaves TDP activity as a principal
remaining source of repair of CPT-induced

damage. Under these circumstances, killing
by CPT still reflects topoisomerase trapping;
when the TOP1 gene of HNY244 was dis-
rupted, survival increased nearly 1000-fold
(7). The mutant line was not sensitized to all
sources of DNA damage; killing by methyl
methane sulfonate (MMS), an alkylating
agent, was indistinguishable in HNY243 and
HNY244 (Fig. 2B).

Mutations in yeast topoisomerase I have
been isolated that depress rejoining and
thereby lead to accumulation of covalent
complexes (11). We used these mutants for
an independent test, one without recourse
to drugs and the attendant questions con-
cerning uptake, of the importance of TDP

activity for in vivo repair of topoisomerase-
DNA adducts. Indeed, overexpression of a
mutant (but not the wild-type) TOP1 gene
was more toxic to the strain with low TDP
activity than to its control (Fig. 3). A sec-
ond mutant, top1R517G, with a similar de-
fect (11), was similarly hypertoxic in the
strain with low TDP activity (7 ).

From a library of yeast genomic frag-
ments screened (12) for the ability to im-
prove the CPT resistance of HNY244 and
restore its TDP activity, we obtained plas-
mid pL10-13 (Figs. 1B and 2C). Several
subclones of the ;8-kb insert in this plas-
mid retained full activity (7 ). The smallest
of these subclones contains a single open

Fig. 4. Alignment of TDP homologs from various organisms. sc, S. cerevisiae gene YBR223c
(GenBank Z36092.1); ce, C. elegans gene F52C12.1 (GenBank AF100657.2); hs59, 59-RACE of
human cDNA (22); hs39, assembly of human ESTs (GenBank AA477148, AA489121, and
AI480141); mm, assembly of mouse ESTs (GenBank AA940134, W89267 and W13117); dm,
Drosophila melanogaster EST (GenBank AI517253). Black boxes, identities; shaded boxes, simi-
larities. A region of uncertain sequence in GenBank entry AA489121 is marked by x residues.

Together with the 59-RACE, the product of a 39-RACE (22) confirms the sequence of the human ESTs and shows that the sequence in the region of
ambiguity is identical to that shown for the mouse protein. The product of the 59-RACE extends for 79 amino acids upstream of the sequence shown
but still may not include the start of the full-length human protein. Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C,
Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
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reading frame (ORF), YBR223c, a protein
of 544 amino acids and relative molecular
mass ; 62,000. Into strain HNY243, we
generated by polymerase chain reaction
(PCR) (13) a disruption that removed all
but the first 32 amino acids of the ORF.
The resulting strain had an enzymatic de-
fect and CPT sensitivity very similar to that
of HNY244 (Figs. 1B and 2A), indicating
that YBR223c is involved in TDP activity.
To distinguish whether YBR223c encodes
or controls TDP activity, we introduced a
histidine-tagged version (14 ) into Esche-
richia coli, which by itself has no detect-
able TDP activity. Induction of bacteria
bearing this construct (but not a control
construct) apparently resulted in massive
overproduction of TDP because crude ex-
tracts of such cells had a specific activity
.10,000 times as high as that of extracts
from a standard yeast strain (Fig. 1, B and
C). Moreover, most of the induced activity
could be bound to a tag-specific column;
specific elution released .75% of the
bound activity, resulting in a fraction with a
single Coomassie-stainable band of the ex-
pected molecular size (7 ). We conclude
that YBR223c encodes the enzyme and
have accordingly renamed its gene TDP1.

Database searches failed to reveal ho-
mology between TDP1 and any genes of
known function. Even individualized com-
parisons to motifs identified in various
phosphodiesterases and phosphatases were,
at best, marginal. On this basis, we con-
clude that TDP1 encodes a previously un-
known enzyme. However, eukaryotic (but
not prokaryotic) databases contain several
unannotated sequences that match TDP1, a
finding consistent with the distribution of
enzyme activity (5). The complete genome
sequence of the nematode Caenorhabditis
elegans contains a single ORF with sub-
stantial similarity to TDP1. Probing ex-
pressed sequence tag (EST) databases with
the yeast and nematode proteins revealed
many unambiguous matches (Fig. 4). In
mouse and man, there are several EST en-
tries that can be aligned to make up a single
ORF with substantial similarity to the car-
boxyl-terminal half of TDP1. To see if the
homology extends further, we carried out a
PCR on a collection of human cDNAs
(Marathon-Ready; Clontech Laboratories,
Palo Alto, CA) with a primer complemen-
tary to the human EST sequence and a
primer complementary to the tag affixed to
the 59 end of the cDNAs. We cloned the
resulting 59-RACE (rapid amplification of
cDNA ends) products; the sequence of one
of the longest clones (Fig. 4) aligns well to
most of the 59 half of the yeast and nemo-
tode ORFs. We conclude that the TDP1
gene is highly conserved in eukaryotes.

Isolation of the TDP1 gene will allow

studies of the enzymology and cell biology
of a kind of DNA repair that has previously
been hard to analyze. The gene also pro-
vides a potential tool to improve chemo-
therapy with camptothecins and other topo-
isomerase I poisons. Although these are
promising anticancer drugs, their value is
often limited by resistance of tumor cells or
sensitivity of nontumor cells (or both). Re-
pair of the topoisomerase lesion is likely to
be one of the factors that determine the
level of cellular sensitivity to topoisomer-
ase poisons (15). With the TDP1 gene in
hand, one can readily assess the expression
of this enzyme in individual patients and
possibly predict the likelihood of therapeu-
tic success. Moreover, if genetic or bio-
chemical techniques can be used to alter
enzyme activity, the efficacy and safety of
the drugs may be improved.
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